UNIVERSITY OF IDAHO Infectious Disease Biotechnology

Carolyn Hovde Bohach, Ph.D.

University of Idaho
Department of Microbiology, Molecular Biology, and Biochemistry
College of Agricultural and Life Sciences

Associate Director: Idaho NIH INBRE

Take Home Message

- Research in Infectious Disease has been successful in Idaho
- A moderate investment by the state can be leveraged to bring in large amounts of federal and company dollars
- The State should continue to support biomedical research
- The State should provide ways for companies to take Idaho biotech discoveries to the marketplace

UI Infectious Disease Research

- Broad categories of Infectious Disease Research
- One Specific example of a successful project (SEC)
- Our experience as scientists

INFECTIOUS DISEASE AREAS

PLANTS

- Plant pathology
 - Diagnostics and surveillance
- Plant biotechnology
 - Breeding programs (resistance esp. wheat, potato, bean)
 - Edible vaccines (human GI infections)

ANIMALS

- Diagnostics and surveillance
- Basic/applied animal health & well-being research
- Animal models for human infections

• HUMAN

Human INFECTIOUS DISEASE AREAS

Basic Research (Molecular and Cellular)

- Bacteria
 - Staphylococcal wound infections, food poisoning, toxic shock syndrome, and mastitis
 - E. coli diarrhea and vascular/kidney failure
 - Streptococcal wound infections and toxic shock syndrome
 - Gas gangrene
 - Plague
 - Tularemia
- Viruses
 - Rhinovirus (colds/hoof and mouth)
 - Cytomegalovirus (birth defects)
- Parasites
 - Toxoplasma (toxoplasmosis)

Human INFECTIOUS DISEASE AREAS

Applied Research (Biotechnology)

- Vaccines (Conventional and Biosecurity Agents)
 - Uses in human and animal infectious diseases
- General Immunostimulants (Adjuvants)
- Anti-Cancer Therapy
- Antibiotics/Antimicrobial Compounds

One Example of Biotech from Infectious Disease Basic Research

• Superantigen Therapy

STAPH is no Laugh!

- Staphylococcus aureus
 - Toxic shock syndrome
 - Staphylococcal food poisoning
 - Immunosuppression
- Toxins are superantigens

Staphylococcal enterotoxin type C (SEC) superantigen

- -Over-stimulation of the immune system
- -Abnormal stimulation of the immune system

STAPHYLOCOCCAL Toxic Shock Syndrome

- SUPERANTIGEN IN DISEASE
 - Toxic shock syndrome
 - Over-stimulation

Staphylococcal Mastitis \$2 billion in lost revenues in U.S.

- SUPERANTIGEN IN DISEASE
 - Immunosuppression
 - Abnormal stimulation

STAPHYLOCOCCAL ENTEROTOXIN C1 (SEC1) MUTANT

Retain immunostimulation without toxicity or immunosuppression

native mutant

SUPERANTIGEN THERAPY

- SEC1M USE IN BOVINE MASTITIS
 - Acquisition of USDA SBIR
 - (Idaho Immunodiagnostics, Inc.)
 - Cooperation with LG Life Sciences, Inc.
 - Initial clinical trials confirmed reduction in Somatic Cell Counts
 - Ongoing trial for effects on clinical mastitis

LG LIFE SCIENCES, Inc.

-Funding for past and ongoing field studies -Licensing agreement for veterinary applications

Govenor Kempthorne, Dr. Yang, Dr. Park, Mr. Garber, Dr. Bohach

Non-specific augmentation of the Immune Response

- Can superantigen therapy be used as an anticancer therapy?
- Can superantigen therapy be used to protect the population from a bioterrorist threat?

SUPERANTIGEN THERAPY

- Anticancer therapy:
 - Non-Small Cell Lung Cancer with Effusions
 - Collaboration with Jenquest, Inc.; Carmel, CA

Y. pestis

- Causative agent of Plague
- Aerosolized Y. pestis
 - Breath in one bacterial cell
 - Death in 1-4 days

SUPERANTIGEN THERAPY

Non-specific protection by augmenting a generalized immune response

Strengths and Opportunities

(Human Infectious Diseases)

- Critical Mass and Diverse Expertise (12 Faculty)
- NIH COBRE AND NIH INBRE Funding
- Potential for integrating with EPSCoR funding
- Close Link Between Biomedical and Agriculture Research
 - Zoonotic Infections and Broad Host-Range Bacteria
- Scientific cooperation (UI, BSU, ISU, VA)
- Sophisticated Cell and Molecular Biology Infrastructure
 - \$32 million in competitive Federal funding since 1988 (mostly NIH)
 - Bioinformatics (NIH and NSF funding)
 - Cell Separation And Analysis
 - Confocal and Electron Microscopy
 - Proteomics and Genomics Labs
 - BSL-3 Facility and Availability of Biodefense Funds

Weaknesses and Threats (Human Infectious Diseases)

- Faculty Retention (Competition with Medical Schools)
- Inadequate statewide internet technologies to take advantage of NIH Lariat funding
- Lack of Local (Idaho) Corporation Partners
 - Need to Look Globally
 - Inadequate resources to take advantage of SBIR programs

Take Home Message

- Research in Infectious Disease has been successful in Idaho
- A moderate investment by the state can be leveraged to bring in large amounts of federal and company dollars
- The State should continue to support biomedical research
- The State should provide ways for companies to take Idaho biotech discoveries to the marketplace